सेवा में.

महात्मा ज्योतिबा फूले रूहेलखण्ड विश्वविद्यालय, बरेली।

महोदय.

आपके संज्ञान में लाना है कि दिनांक 22.07.2021 को गणित विषय की पाठ्य समिति की एक ऑफलाइन बैठक विश्वविद्यालय के प्रशासनिक भवन में सम्पन्न हुयी। जिसमें डॉo पीoकेo शुक्ला, के0जी0के0 कॉलेज, मुरादाबाद, डॉ0 पूनम सिंह, बरेली कॉलेज, बरेली व समन्वयक के रूप में मैं स्वयं उपस्थित रहा। साथ ही बाहय विशेषज्ञ के रूप में डॉ० एम०सी० जोशी, कुमांऊ विश्वविद्यालय तथा डॉ० सतीश चन्द्र वार्ष्णेय, एस०एम० कॉलेज चन्दौसी, ऑनलाइन उपस्थित रहे।

उक्त बैठक विश्वविद्यालय के प्रतिनिधि प्रो0 पी0बी0 सिंह की उपस्थिति में सम्पन्न हुयी। बैठक

में कुछ प्रस्ताव पारित हुए जिसकी प्रतिलिपि इस पत्र के साथ संलग्न की जा रही है।

इसके अतिरिक्त पाठ्यकम में कुछ टॉपिक हटाने की भी संस्तुति की गयी जो निम्न है।

B.A./B.Sc. I (Semester-I) Paper-I differential Calculus & Integral Calculus

Part-A- Heine's definition, equivalence of definition of Cauchy and Heine, Borel's theorem, boundedness theorem, Parametric representation of curves and tracing of parametric curves.

Part-B- differentiation under the sign of Integration.

B.A./B.Sc. I (Semester-I) Paper-II

The main objective of the course is to equip the student to plot the different graph and solve the different type of equation by ploting the graph using different software such as mathematica/MATLAB/Maple/Scilab/Maxima etc.

Sketching parametric curves, e.g., Trochoid, Cycloid, Epicycloid and Hypocycloid etc.

B.A./B.Sc. I (Semester-II) Paper-I Matrices and Differential equations & Geometry

Part-A- Theorems on consistency of a system of linear equation.

Part-B- Confocal conics, plane section of conicoids, confocal conicoids

B.A./B.Sc. II (Semester-III) Paper-I Algebra & Mathematical Methods

Part-A- Congruence modulo n, The alternative group

Part -B- Linearity of Laplace Transform and their properties, Fourier expansion of piecewise monotonic function, functional dependent on higher order, Functionals dependent on more than one independent variables, variational problems in parametric form.

B.A./B.Sc. II (Semester-IV) Paper-I Differential Equations & Mechanics

Part-B- poinsot's central axis, Wrenches, motion in resisting

(डॉ० स्वदेश सिंह) समन्वयक गणित. बरेली कॉलेज. बरेली

DEPARTMENT OF HIGHER EDUCATION U.P. GOVERNMENT, LUCKNOW

National Education Policy-2020

Common Minimum Syllabus for all U.P. State Universities and Colleges FOR FIRST THREE YEARS OF HIGHER EDUCATION (UG)

FOR

B.Sc.

MATHEMATICS

Common Minimum Syllabus for all U.P. State Universities/ Colleges SUBJECT: MATHEMATICS

Name	Designation	Affiliation
Steering Committee		
Mrs. Monika S. Garg, (I.A.S.) Chairperson Steering Committee	Additional Chief Secretary	Dept. of Higher Education U.P., Lucknow
Prof. Poonam Tandan	Professor, Dept. of Physics	Lucknow University, U.P.
Prof. Hare Krishna	Professor, Dept. of Statistics	CCS University Meerut, U.P.
Dr. Dinesh C. Sharma	Associate Professor, Dept. of Zoology	K.M. Govt. Girls P.G. College Badalpur, G.B. Nagar, U.P.
Supervisory Committee-Science Fact	ulty	
Dr. Vijay Kumar Singh	Associate Professor, Dept. of Zoology	Agra College, Agra
Dr. Santosh Singh	Dean, Dept. of Agriculture	Mahatma Gandhi Kashi Vidhyapeeth, Varanasi
Dr. Baby Tabussam	Associate Professor, Dept. of Zoology	Govt. Raza P.G. College Rampur, U.P.
Dr. Sanjay Jain	Associate Professor, Dept. of Statistics	St. John's College, Agra

Syllabus Developed by:

S.No.	Name	Designation	Department	College/University
1.	Dr. S. S. Mishra	Professor	Mathematics	Dr.R M L Avadh University, Ayodhya
			and Statistics	
2.	Dr. Jogendra Kumar	Assistant Professor	Mathematics	Govt. Degree College, Raza Nagar
				Swar, Rampur (UP)
3.	Dr. Abhishek Singh	Assistant Professor	Mathematics	Dr.R M L Avadh University, Ayodhya
			and Statistics	

S	EMESTER	WISE TI	TLES OF THE PAPER IN UG MAT	HEMATICS COUR	SE								
YEAR	SEMESTER	COURSE CODE	PAPER TITLE	THEORY/PRACTICAL	CREDIT								
	CERTIFICATE COURSE IN APPLIED MATHEMATICS												
FIRST	I	B030101T	Differential Calculus & Integral Calculus	THEORY	4								
YEAR		B030102P	PRACTICAL	PRACTICAL	2								
	II	B030201T	Matrices and Differential Equations & Geometry	THEORY	6								
			DIPLOMA IN MATHEMATICS										
SECOND	III	B030301T	Algebra & Mathematical Methods	THEORY	6								
YEAR	IV	B030401T	Differential Equation & Mechanic	THEORY	6								
		I	DEGREE IN MATHEMATICS		1								
THIRD	V	B030501T	Group and Ring Theory & Linear Algebra	THEORY	5								
YEAR		B030502T	Any One of The Following (i) Number Theory & Game Theory (ii) Graph Theory & Discrete Mathematics (iii) Differential Geometry & Tensor Analysis	THEORY	5								
	VI	B030601T	Metric Space & Complex Analysis	THEORY	4								
		B030602T	Numerical Analysis & Operations Research	THEORY	4								
		B030603P	PRACTICAL	PRACTICAL	2								

PROPOSED STRUCTURE OF UG MATHEMATICS SYLLABUS AS PER NEP 2020 GUIDELINES GENERAL OVERVIEW

							B.A./B.Sc. I			
PROGRAMME	YEAR	SEMESTER (15 Weeks)	PAPER	CREDIT	PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
							Differential Calculus	Part A	Mathematics in 12 th	Engg. and Tech. (UG),
			Paper-1	4	4	$4x\ 15 = 60$	&	Unit I (9)		Chemistry/Biochemistry/
							Integral Calculus	Unit II (7)		Life Sciences(UG), Economics(UG/PG
							U U	Unit III (7)		Commerce(UG), BBA/BCA, B.Sc.(C.S
		_					Part A: Differential Calculus	Unit IV (7)		
							art A. Differential Calculus	Part B		
		ĬĔ,					Part R. Integral Calculus	Unit V (9)		
$\mathbf{Z} = \mathbf{S}$		ST						Unit VI (7)		
		ME						Unit VII (7)		
SS A		SEMESTER						Unit VIII (7)		
ERTIFICATE COURSE IN APPLIED MATHEMATICS	~		Paper-II	2	2 Lab		Practical		Mathematics in 12 th	Engg. and Tech. (UG), B.Sc.(C.S.)
옷 표	[A]		Practical		Periods(2	$2x2x\ 15=60$	(Practicals to be done			
E (YE				Hours		using Mathematica			
	Ţ				Each)		/MATLAB /Maple			
CERTIFICATE APPLIED MA'	FIRST YEAR						/Scilab/Maxima etc.)			
	=						Matrices and Differential	Part A	Mathematics in 12 th	Engg. and Tech. (UG), B.Sc.(C.S.)
			Paper-1	6	6	6 x 15= 90	Equations	Unit I (12)		
X E							&	Unit II (11)		
₹		ER					Geometry	Unit III (11)		
							·	Unit IV (11)		
		ES					Part A: Matrices and	Part B		
		SEMEST						Unit V (12)		
		SE					Differential Equations	Unit VI (11)		
								Unit VII (11)		
							Part B: Geometry	Unit VIII (11)		

								B.A./B.Sc. II			
PROGRA	MME	YEAR	SEMESTER (15 Weeks)	PAPER	CREDIT	PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
	TICS	AR	SEMESTER –III	Paper-1	6	6	6 x 15= 90	Algebra & Mathematical Methods Part A: Algebra Part B: Mathematical Methods	Part A Unit I (12) Unit II (11) Unit III (11) Unit IV (11) Part B Unit V (12) Unit VI (11) Unit VI (11)	Certificate Course in Applied Mathematics	Engg. and Tech. (UG), B.Sc.(C.S.)
DIPLOMA	MATHEMATICS	SECOND YEAR		Paper-1	6	6	6 x 15= 90	Differential Equation & Mechanics Part A: Differential Equation Part B: Mechanics	Unit VIII (11) Part A Unit I (12) Unit II (11) Unit IV (11) Part B Unit V (12) Unit VI (11) Unit VII (11) Unit VII (11)	Certificate Course in Applied Mathematics	Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.) Engineering and Technology (UG), Science (Physics-UG)

							B.A./B.Sc. III			
PROGRAMME	YEAR	SEMESTER (15 Weeks)	PAPER	CREDIT	PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
							Group and Ring Theory	Part A	Certificate Course in	Engg. and Tech. (UG),
			Paper-1	5	5	5x 15= 75	&	Unit I (10)	Applied	Economics(UG/PG), B.Sc.(C.S.)
							Linear Algebra	Unit II (10)	Mathematics	
								Unit III (9)		
							Part A: Group and Ring Theory	Unit IV (9)		
							Part B: Linear Algebra	Part B		
								Unit V (10)		
								Unit VI (9)		
								Unit VII (9)		
		-						Unit VIII (9)		
				_	_			Part A	Diploma in	Engg. and Tech.(UG), BCA, B.Sc.(C.S.)
			Paper-2	5	5	$5x\ 15 = 75$	(i) Number Theory & Game	Unit I (10)	Mathematics	
							Theory	Unit II (9)		
								Unit III (9)		
							Part A: Number Theory	Unit IV (9)		
							Part B: Game Theory	Part B Unit V (10)		
								Unit VI (10)		
Ň	2							Unit VI (10)		
		>						Unit VIII (9)		
SE ATI	YERA	SEMESTER					(ii) Graph Theory & Discrete	Part A	Diploma in	Engg. and Tech. (UG), B.Sc.(C.S.)
DEGREE IN THEMAZ	X	IESJ					Mathematics	Unit I (10)	Mathematics	Eligg. and Teem. (CO), B.Sc.(C.S.)
	RD	SEN					Transition and the second	Unit II (9)		
	THIRD						Part A: Graph Theory	Unit III (9)		
DEGRE IN MATHEM	L						Part B: Discrete Mathematics	Unit IV (9)		
								Part B		
								Unit V (10)		
								Unit VI (10)		
								Unit VII (9)		
								Unit VIII (9)		
							410 T100		5	
							(iii) Differential Geometry &	Part A	Diploma in	Engg. and Tech. (UG), B.Sc.(C.S.)
							Tensor Analysis Part A. Differential Company	Unit I (10)	Mathematics	
							Part A: Differential Geometry Part P: Tangar Analysis	Unit II (9)		
							Part B: Tensor Analysis	Unit III (9) Unit IV (9)		
								Part B		
								Unit V (10)		
								Unit VI (10)		
								Unit VI (10)		
								Unit VIII (9)		
								, (<i>)</i>		

					Metric Space	Part A	Diploma in	Engg. and Tech. (UG), B.Sc.(C.S.)
	Paper-1	4	4	4 x 15= 60	&	Unit I (8)	Mathematics	
					Complex Analysis	Unit II (8)		
						Unit III (7)		
					Part A: Metric Space	Unit IV (7)		
					Part B: Complex Analysis	Part B		
						Unit V (8)		
VI						Unit VI (8)		
1						Unit VII (7)		
						Unit VIII (7)		
SEMESTER					Numerical Analysis	Part A	Diploma in	Engg. and Tech. (UG), Economics(UG/PG),
SEI	Paper-2	4	4	4x 15= 60	&	Unit I (8)	Mathematics	BBA/BCA, B.Sc.(C.S.)
					Operations Research	Unit II (8)		
						Unit III (7)		
					Part A: Numerical Analysis	Unit IV (7)		
						Part B		
					Part B: Operations Research	Unit V (8)		
						Unit VI (8)		
						Unit VII (7)		
						Unit VIII (7)		
	Paper-III	2	2 Lab		Practical		Diploma in	Engg. and Tech. (UG), B.Sc.(C.S.)
	Practical		Periods(2	2x2x 15 = 60	(Practicals to be done		Mathematics	
			Hours		using Mathematica			
			Each)		/MATLAB /Maple			
					/Scilab/Maxima etc.)			

Programme Outcome/ Programme Specific Outcome

Programme Outcome:

PO1: It is to give foundation knowledge for the students to understand basics of mathematics including applied aspect for the same.

PO2: It is to develope enhanced quantitative skills and pursuing higher mathematics and research as well.

PO3: Students will be able to develop solution oriented approach towards various issues related to their environment.

PO4: Students will become employable in various govt. and private sectors

PO5: Scientific temper in general and mathematical temper in particular will be developed in students.

Programme Specific Outcome:

PSO1: Student should be able to possess recall basic idea about mathematics which can be displayed by them.

PSO2: Student should have adequate exposure to many aspects of mathematical sciences.

PSO3: Student is equipped with mathematical modeling ability, critical mathematical thinking, and problem solving skills etc.

PSO4: Student should be able to apply their skills and knowledge in various fields of studies including, science, engineering, commerce and management etc.

B.A. /B.Sc. I (MATHEMATICS)

Detailed Syllabus For

CERTIFICATE COURSE

IN

APPLIED MATHEMATICS

B.A./B.Sc. I (SEMESTER-I) PAPER-I Differential Calculus & Integral Calculus

Programme: Certificate Class: B.A./B.Sc.	Year: First	Semester: First
		Subject: Mathematics
Course Code: B030101T		Course Title: Differential Calculus & Integral Calculus

Course outcomes:

CO1: The programme outcome is to give foundation knowledge for the students to understand basics of mathematics including applied aspect for developing enhanced quantitative skills and pursuing higher mathematics and research as well.

CO2: By the time students complete the course they will have wide ranging application of the subject and have the knowledge of real valued functions such as sequence and series. They will also be able to know about convergence of sequence and series. Also, they have knowledge about curvature, envelope and evolutes and trace curve in polar, Cartesian as well as parametric curves.

CO3: The main objective of the course is to equip the student with necessary analytic and technical skills. By applying the principles of integral he learns to solve a variety of practical problems in science and engineering.

CO4: The student is equipped with standard concepts and tools at an intermediate to advance level that will serve him well towards taking more advance level course in mathematics.

Credits: 4	Core Compulsory / Elective
Max. Marks: 25+75	Min. Passing Marks:
To	otal No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Part- A Differential Calculus

Differential Calculus								
Unit	Topics	No. of Lectures						
I	Introduction to Indian ancient Mathematics and Mathematicians should be included under Continuous Internal Evaluation (CIE). Definition of a sequence, theorems on limits of sequences, bounded and monotonic sequences, Cauchy's convergence criterion, Cauchy sequence, limit superior and limit inferior of a sequence, subsequence, Series of non-negative terms, convergence and divergence, Comparison tests, Cauchy's integral test, Ratio tests, Root test, Raabe's logarithmic test, de Morgan and Bertrand's tests, alternating series, Leibnitz's theorem, absolute and conditional convergence.	9						
II	Limit, continuity and differentiability of function of single variable, Cauchy's definition, Heine's definition, equivalence of definition of Cauchy and Heine, Uniform continuity, Borel's theorem, boundedness theorem, Bolzano's theorem, Intermediate value theorem, extreme value theorem, Darboux's intermediate value theorem for derivatives, Chain rule, indeterminate forms.							
III	Rolle's theorem, Lagrange and Cauchy Mean value theorems, mean value theorems of higher order, Taylor's theorem with various forms of remainders, Successive differentiation, Leibnitz theorem, Maclaurin's and Taylor's series, Partial differentiation, Euler's theorem on homogeneous function.							
IV	Tangent and normals, Asymptotes, Curvature, Envelops and evolutes, Tests for concavity and convexity, Points of inflexion, Multiple points, Parametric representation of curves and tracing of parametric curves, Tracing of curves in Cartesian and Polar forms.	7						

	Part-B						
	Integral Calculus						
Unit	m ·	No. of					
	Topics						
V	Definite integrals as limit of the sum, Riemann integral, Integrability of continuous and monotonic functions, Fundamental theorem of	9					
	integral calculus, Mean value theorems of integral calculus, Differentiation under the sign of Integration.						
VI	Improper integrals, their classification and convergence, Comparison test, µ-test, Abel's test, Dirichlet's test, quotient test, Beta and	7					
	Gamma functions.	,					
VII	Rectification, Volumes and Surfaces of Solid of revolution, Pappus theorem, Multiple integrals, change of order of double integration,	7					
, 11	Dirichlet's theorem, Liouville's theorem for multiple integrals.	,					
VIII	Vector Differentiation, Gradient, Divergence and Curl, Normal on a surface, Directional Derivative, Vector Integration, Theorems of	7					
V 111	Gauss, Green, Stokes and related problems.	,					

Suggested Readings (Part- A Differential Calculus):

- 1. R.G. Bartle & D.R. Sherbert, Introduction to Real Analysis, John Wiley & Sons
- 2. T.M. Apostal, Calculus Vol. I, John Wiley & Sons Inc.
- 3. S. Balachandra Rao & C. K. Shantha, Differential Calculus, New Age Publication.
- 4. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc., 2002.
- 5. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007.
- 6. Suggestive digital platforms web links: NPTEL/SWAYAM/MOOCS
- 7. Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Integral Calculus):

- 1. T.M. Apostal, Calculus Vol. II, John Wiley Publication
- 2. Shanti Narayan & Dr. P.K. Mittal, Integral Calculus, S.Chand
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 4. Suggestive digital platforms web links: NPTEL/SWAYAM/MOOCS
- 5. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Chemistry/Biochemistry/Life Sciences(UG), Economics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25							
N	Assessment Type	Max. Marks					
Cl	Class Tests	10					
O	Online Quizzes/ Objective Tests	5					
Pr	Presentation	5					
As	Assignment (Introduction to Indian ancient Mathematics and Mathematicians).	5					
	Assignment (Introduction to Indian ancient Mathematics and Mathematicians). The prerequisites: To study this course, a student must have subject Mathematics in class 12 th						

Course prerequisites: To study this course, a student must have subject Mathematics in class 12^m

Suggested equivalent online courses:

Further Suggestions:

B.A./B.Sc. I (SEMESTER-I) Paper-II Practical

Programme: Certificate	Year: First	Semester: First
Class: B.A./B.Sc.		
		Subject: Mathematics
Course Code: B030102P		Course Title: Practical

Course outcomes:

CO1: The main objective of the course is to equip the student to plot the different graph and solve the different types of equations by plotting the graph using different computer software such as Mathematica /MATLAB /Maple /Scilab/Maxima etc.

- **CO2.** After completion of this course student would be able to know the convergence of sequences through plotting, verify Bolzano-Weierstrass theorem through plotting the sequence, Cauchy's root test by plotting n^{th} roots and Ratio test by plotting the ratio of n^{th} and $(n + 1)^{th}$ term.
- CO3. Student would be able to plot Complex numbers and their representations, Operations like addition, substraction, Multiplication, Division, Modulus and Graphical representation of polar form.
- CO4: Student would be able to perform following task of matrix as Addition, Multiplication, Inverse, Transpose, Determinant, Rank, Eigenvectors, Eigenvalues, Characteristic equation and verification of the Cayley-Hamilton theorem, Solving the systems of linear equations.

	Credits: 2	Core Compulsory / Elective	
	Max. Marks: 25+75	Min. Passing Marks:	
	Tota	l No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4	
Unit		No. of Lectures	
	Practical / Lab work to be per List of the practicals to be done		
	1. Plotting the graphs of the following	lowing functions:	
	 (i) ax (ii) [x] (greatest integer function) (iii) x²ⁿ; n ∈ N 		
	(iv) x^{2n-1} ; $n \in \mathbb{N}$		
	$(v)\frac{1}{x^{2n-1}}; n \in N$		
	$(vi) \frac{1}{x^{2n}}; n \in \mathbb{N}$		
	(vii) $\sqrt{ax + b}$, $ ax + b $, $c \pm ax $	+ b	
	$(ix)\frac{ x }{x}$, $\sin\left(\frac{1}{x}\right)$, $x\sin\left(\frac{1}{x}\right)$, e^x , e^-	$x \text{ for } x \neq 0.$	
	$(x) e^{ax+b}$, $\log(ax+b)$, $\frac{1}{ax+b}$, s	$\sin(ax + b)$, $\cos(ax + b)$, $ \sin(ax + b) $, $ \cos(ax + b) $.	
	Observe and discuss the effect of	of changes in the real constants a and b on the graphs.	
	(2) By plotting the graph find the	ne solution of the equation	
	$x = e^x, x^2 + 1 = e^x, 1 - x^2 =$	e^{x} , $x = \log_{10}(x)$, $\cos(x) = x$, $\sin(x) = x$, $\cos(y) = \cos(x)$, $\sin(y) = \sin(x)$ etc	
	(3) Plotting the graphs of polyn	omial of degree 2,3, 4 and 5, and their first and second derivatives.	

- (4) Sketching parametric curves, e.g., Trochoid, Cycloid, Epicycloid and Hypocycloid etc.
- (5) Tracing of conic in Cartesian coordinates.
- (6) Graph of circular and hyperbolic functions.
- (7) Obtaining surface of revolution of curves.
- (8) Complex numbers and their representations, Operations like addition, Multiplication, Division, Modulus. Graphical representation of polar form.
- (9) Find numbers between two real numbers and plotting of finite and infinite subset of R.
- (10) Matrix Operations: Addition, Multiplication, Inverse, Transpose, Determinant, Rank, Eigenvectors, Eigenvalues, Characteristic equation and verification of the Cayley-Hamilton theorem, Solving the systems of linear equations.
- (11) Study the convergence of sequences through plotting.
- (12) Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot.
- (13)Study the convergence/divergence of infinite series by plotting their sequences of partial sum.
- (14) Cauchy's root test by plotting *n*-th roots.
- (15) Ratio test by plotting the ratio of n-th and (n + 1)-th term.

Suggested Readings

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Chemistry/Biochemistry/Life Sciences(UG), Economics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25

SN	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation	5
4	Assignment	5

Course prerequisites: To study this course, a student must have subject Mathematics in class 12th

Suggested equivalent online courses:

Further Suggestions:

B.A./B.Sc. I (SEMESTER-II) PAPER-I Matrices and Differential Equations & Geometry

Semester: Second

Programme: Certificate

O	me. Certificate	Year: First	Semester. Second	
Class: B.A	A./B.Sc.			
			Subject: Mathematics	
Course Co	ode: B030201T		Course Title: Matrices and Differential Equations & Geometry	
Course or	itcomes:			
	•		n such a way that they focus on developing mathematical skills in algebra, calculus and analysis	and give i
depth know	wledge of geometr	ry, calculus, algebra	and other theories.	
CO2: The	student will be a	ble to find the rank,	eigen values of matrices and study the linear homogeneous and non-homogeneous equations. T	he course i
differential	l equation intend	s to develop problem	m solving skills for solving various types of differential equation and geometrical meaning of	differenti
equation.				
CO3: The	subjects learn a	nd visualize the fur	ndamental ideas about coordinate geometry and learn to describe some of the surface by using	g analytic
geometry.				
CO4: On	successful comp	letion of the course	e students have gained knowledge about regular geometrical figures and their properties. Th	ey have th
foundation	for higher course	e in Geometry.		
	Credits: 6		Core Compulsory / Elective	
	Max. Marks: 25	+75	Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0	
			PART-A	
			Matrices and Differential Equations	
Unit				No. of
			Topics	Lectures
	Types of Matric	es, Elementary opera	tions on Matrices, Rank of a Matrix, Echelon form of a Matrix, Normal form of a Matrix, Inverse	-
I	of a Matrix by e	lementary operations	s, System of linear homogeneous and non-homogeneous equations, Theorems on consistency of a	12
	system of linear	equations.		
	Eigen values, Ei	gen vectors and char	acteristic equation of a matrix, Caley-Hamilton theorem and its use in finding inverse of a matrix,	
II	Complex function	ons and separation in	to real and imaginary parts, Exponential and Logarithmic functions Inverse trigonometric and	11
	hyperbolic funct	ions.		
	Formation of dif	ferential equations, (Geometrical meaning of a differential equation, Equation of first order and first degree, Equation	
III	in which the var	iables are separable,	Homogeneous equations, Exact differential equations and equations reducible to the exact form,	11
	Linear equations	S.		
	First order high	er degree equations	solvable for x, y, p, Clairaut's equation and singular solutions, orthogonal trajectories, Linea	r
TX 7	differential equa	tion of order greater	than one with constant coefficients, Cauchy- Euler form.	11
IV				11
1	1			i

PART-B

Geometry

Unit	Topics	No. of Lectures			
V	General equation of second degree, System of conics, Tracing of conics, Confocal conics, Polar equation of conics and its properties.	12			
VI	hree-Dimensional Coordinates, Projection and Direction Cosine, Plane (Cartesian and vector form), Straight line in three dimension.				
VII	Sphere, Cone and Cylinder.	11			
VIII	Central conicoids, Paraboloids, Plane section of conicoids, Generating lines, Confocal conicoids, Reduction of second degree equations.	11			

Suggested Readings (PART-A Matrices and Differential Equations):

- 1. Stephen H. Friedberg, A.J Insel & L.E. Spence, Linear Algebra, Person
- 2. B. Rai, D.P. Choudhary & H. J. Freedman, A Course in Differential Equations, Narosa
- 3. D.A. Murray, Introductory Course in Differential Equations, Orient Longman
- 4. Suggested digital plateform: NPTEL/SWAYAM/MOOCs
- 5. Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Geometry):

- 1. Robert J.T Bell, Elementary Treatise on Coordinate Geometry of three dimensions, Macmillan India Ltd.
- 2. P.R. Vittal, Analytical Geometry 2d & 3D, Pearson.
- 3. S.L. Loney, The Elements of Coordinate Geometry, McMillan and Company, London.
- 4. R.J.T. Bill, Elementary Treatise on Coordinate Geometry of Three Dimensions, McMillan India Ltd., 1994.
- 5. Suggested digital plateform: NPTEL/SWAYAM/MOOCs
- **6.** Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), Commerce(UG), BBA/BCA B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25 SN Assessment Type Max. Marks 1 Class Tests 10 2 Online Quizzes/ Objective Tests 5 3 Presentation 5 4 Assignment 5

Course prerequisites: To study this course, a student must have subject Mathematics in class 12th

Suggested equivalent online courses:

Further Suggestions:

B.A. /B.Sc. II (MATHEMATICS)

Detailed Syllabus For

DIPLOMA IN MATHEMATICS

B.A./B.Sc.II (SEMESTER-III) PAPER-I Algebra & Mathematical Methods

Semester: Third

Programn	ne: Diploma	Year: Second		
Class: B.A	A./B.Sc.			
			Subject: Mathematics	
Course Co	ode: B030301T		Course Title: Algebra & Mathematical Methods	
Course ou	atcomes:			
CO1: Gro	up theory is one	of the building blocks	of modern algebra. Objective of this course is to introduce students to basic concepts of Group,	Ring theor
and their p	properties.			
CO2: A st	tudent learning th	his course gets a conce	ept of Group, Ring, Integral Domain and their properties. This course will lead the student to bas	ic course in
advanced 1	mathematics and	Algebra.		
CO3: The	course gives em	phasis to enhance stud	ents' knowledge of functions of two variables, Laplace Transforms, Fourier Series.	
CO4: On	successful comp	letion of the course str	udents should have knowledge about higher different mathematical methods and will help him	in going fo
higher stud	dies and research			
	Credits: 6		Core Compulsory / Elective	
	Max. Marks: 2	5+75	Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0	
			Part- A	
			Algebra	
				No. of
Unit			Topics	Lectures
	Introduction t	o Indian ancient Math	nematics and Mathematicians should be included under Continuous Internal Evaluation (CIE).	Zectures
		·		
I	Equivalence re	lations and partitions,	Congruence modulo n, Definition of a group with examples and simple properties, Subgroups,	12
		group, Cyclic groups.		
II	Permutation gr	oups, Even and odd p	permutations, The alternating group, Cayley's theorem, Direct products, Coset decomposition,	11
		-	nces, Fermat and Euler theorems	
	Normal subgro	oups, Quotient groups	, Homomorphism and isomorphism, Fundamental theorem of homomorphism, Theorems on	
III	isomorphism.			11
	Rings, Subring	s, Integral domains and	d fields, Characteristic of a ring, Ideal and quotient rings, Ring homomorphism, Field of quotient	
	of an integral d			
IV				11
	1			

Part- B					
	Mathematical Methods				
Unit	Topics	No. of			
		Lectures			
V	Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition for differentiability of functions two variables, Schwarz's and Young theorem, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange multiplier method, Jacobians.				
VI	Existence theorems for Laplace transforms, Linearity of Laplace transform and their properties, Laplace transform of the derivatives and integrals of a function, Convolution theorem, inverse Laplace transforms, Solution of the differential equations using Laplace transforms.				
VII	Fourier series, Fourier expansion of piecewise monotonic functions, Half and full range expansions, Fourier transforms (finite and infinite), Fourier integral.	11			
VIII	Calculus of variations-Variational problems with fixed boundaries- Euler's equation for functionals containing first order derivative and one independent variable, Extremals, Functionals dependent on higher order derivatives, Functionals dependent on more than one independent variable, Variational problems in parametric form.				

Suggested Readings(Part-A Algebra):

- 1. J.B. Fraleigh, A first course in Abstract Algebra, Addison-weley
- 2. I. N. Herstein, Topics in Algebra, John Wiley & Sons
- 3. Suggested digital plateform: NPTEL/SWAYAM/MOOCS
- **4.** Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part- B Mathematical Methods):

- 1. T.M. Apostal, Mathematical Analysis, Person
- 2. G.F. Simmons, Differential Equations with Application and Historical Notes, Tata -McGrawHill
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 4. Suggested digital plateform: NPTEL/SWAYAM/MOOCs
- **5.** Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)

SN Max. Marks **Assessment Type Class Tests Online Quizzes/ Objective Tests**

5 **Presentation** Assignment (Introduction to Indian ancient Mathematics and Mathematicians)

Suggested Continuous Evaluation Methods: Max. Marks: 25

10

5

Course prerequisites: To study this course, a student must have subject Mathematics in class 12th

Suggested equivalent online courses:

Further Suggestions:

B.A./B.Sc. II (SEMESTER-IV) PAPER-I Differential Equations & Mechanics

Semester: Fourth

Programme: Diploma

IV

Year: Second

variable coefficients, Monge's method of solution.

Class: B.A	A./B.Sc.	rear. Second		
			Subject: Mathematics	
Course Co	ode: B030401T		Course Title: Differential Equations & Mechanics	
Course ou	utcomes:			
CO1: The	objective of thi	s course is to familiari	ze the students with various methods of solving differential equations, partial differential equat	ions of firs
order and s	second order and	l to have qualitative app	plications.	
CO2: A st	tudent doing this	s course is able to solve	e differential equations and is able to model problems in nature using ordinary differential equa	tions. Afte
completing	g this course, a s	student will be able to	take more courses on wave equation, heat equation, diffusion equation, gas dynamics, non linear	ar evolutio
equation et	tc. These entire of	courses are important in	engineering and industrial applications for solving boundary value problem.	
CO3: The	object of the pap	per is to give students k	nowledge of basic mechanics such as simple harmonic motion, motion under other laws and force	es.
CO4: The	student, after co	ompleting the course ca	in go for higher problems in mechanic such as hydrodynamics, this will be helpful in getting emp	ployment is
industry.				
	Credits: 6		Core Compulsory / Elective	
	Max. Marks: 2		Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0	
			Part- A	
			Differential Equations	
Unit			Topics	No. of
			Торгез	Lectures
I		_	ions with variable coefficients: Use of a known solution to find another, normal form, method of parameters, Series solutions of differential equations, Power series method.	12
П	Bessel, Legend	re and Hypergeometric	functions and their properties, recurrence and generating relations.	11
III		tial equation of first or	al equations. Partial differential equations of the first order and degree one, Lagrange's solution, order and degree greater than one. Charpit's method of solution, Surfaces Orthogonal to the given	
	Origin of seco	nd order PDE, Solution	on of partial differential equations of the second and higher order with constant coefficients,	,

UG MATHEMATICS 17

Classification of linear partial differential equations of second order, Solution of second order partial differential equations with

11

	Mechanics	
Unit	Topics	No. of Lectures
V	Frame of reference, work energy principle, Forces in three dimensions, Poinsot's central axis, Wrenches, Null lines and planes.	12
VI	Virtual work, Stable and Unstable equilibrium, Catenary, Catenary of uniform strength.	11
VII	Velocities and accelerations along radial and transverse directions, and along tangential and normal directions, Simple Harmonic motion, Motion under other law of forces. Elastic strings, Motion in resisting medium, Constrained motion, Motion on smooth and rough plane curves.	
VIII	Motion of particles of varying mass, Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimensions, Rotating frame of reference, Rotating Earth, Acceleration in terms of different coordinates systems.	11

Part-B

Suggested Readings(Part-A Differential Equations):

- 1. G.F. Simmons, Differential Equations with Application and Historical Notes, Tata –McGrawHill
- 2. B. Rai, D.P. Choudhary & H. J. Freedman, A Course of Ordinary Differential Equations, Narosa
- 3. Ian N. Snedden, Elements of Partial Differential Equations, Dover Publication
- 4. L.E. Elsgolts, Differential Equation and Calculus of variations, University Press of the Pacific.
- 5. Suggested digital plateform: NPTEL/SWAYAM/MOOCs
- **6.** Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings(Part-B Mechanics):

- 1. R.C. Hibbeler, Engineering Mechanics-Statics, Prentics Hall Publishers
- 2. R.C. Hibbeler, Engineering Mechanics-Dynamics, Prentics Hall Publishers
- 3. A. Nelson, Engineering Mechanics Statics and Dynamics, Tata McGraw Hill
- 4. J.L. Synge & B.A. Griffith, Principles of Mechanics, Tata McGraw Hill
- **5.** Suggested digital plateform: NPTEL/SWAYAM/MOOCs
- 6. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25 SN Assessment Type Max. Marks 1 Class Tests 10 2 Online Quizzes/ Objective Tests 5 3 Presentation 5 4 Assignment 5

Course prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics

Suggested equivalent online courses:

Further Suggestions:

B.A. /B.Sc. III (MATHEMATICS)

Detailed Syllabus For

DEGREE IN STATICS

B.A./B.Sc. III (SEMESTER-V) PAPER-I Group and Ring Theory & Linear Algebra

Programm Class: B.A	ne: Degree	Year: Thi	ird	Semester: Fifth	
	1, 2,50			Subject: Mathematics	
Course Co	ode: B030501T			Course Title: Group and Ring Theory & Linear Algebra	
Course or	utcomes:				
CO1: Line	er algebra is a bas	sic course in alr	most all	branches of science. The objective of this course is to introduce a student to the basics of linear al	lgebra and
some of its	s applications.				
CO2: Stu	idents will be able	e to know the co	oncepts	of group, ring and other related properties which will prepare the students to take up further appl	ications in
the relevar	nt fields.				
CO3: The	student will use	this knowledge	in com	puter science, finance mathematics, industrial mathematics and bio mathematics. After completion	n of this
course stud	dents appreciate i	its interdisciplin	nary nat	ure.	
	Credits: 5			Core Compulsory / Elective	
	Max. Marks: 25+75 Min. Passing Marks:				
	7	Total No. o	f Lec	tures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
				PART-A	
				Group and Ring Theory	
					No. of
Unit				Topics	Lectures
	Introduction to	o Indian ancier	nt Math	ematics and Mathematicians should be included under Continuous Internal Evaluation (CIE).	
I	Automorphism,	, inner automor	phism,	Automorphism groups, Automorphism groups of finite and infinite cyclic groups, Characteristic	10
				l its properties; Applications of factor groups to automorphism groups.	
II				on, <i>p</i> -groups, The Sylow theorems and consequences, Applications of Sylow theorems; Finite eneralized Cayley's theorem, Index theorem, Embedding theorem and applications.	10
III	Polynomial rin	ngs over comi	mutativ	e rings, Division algorithm and consequences, Principal ideal domains, Factorization of	9
	polynomials, Ro	educibility tests	s, Irredu	scibility tests, Eisenstein criterion, Unique factorization in Z[x].	

UG MATHEMATICS 20

9

Divisibility in integral domains, Irreducibles, Primes, Unique factorization domains, Euclidean domains.

IV

PART-B

Linear Algebra

TT •4	Topics						
Unit	Topics						
V	Vector spaces, Subspaces, Linear independence and dependence of vectors, Basis and Dimension, Quotient space.	10					
VI	Linear transformations, The Algebra of linear transformations, rank nullity theorem, their representation as matrices.	9					
VII	Linear functionals, Dual space, Characteristic values, Cayley Hamilton Theorem.	9					
X/III	Inner product spaces and norms, Cauchy-Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for	9					
VIII	finite dimensional spaces, Gram-Schmidt orthogonalization process, Bilinear and Quadratic forms.						

Suggested Readings:

- 1. Topics in Algebra by I. N. Herstein.
- 2. Linear Algebra by K. Hoffman and R. Kunze.
- 3. Suggested digital plateform: NPTEL/SWAYAM/MOOCs
- 4. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25

SN	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation	5
4	Assignment (Introduction to Indian ancient Mathematics and Mathematicians)	5

Course prerequisites: To study this course, a student must have Diploma in Mathematics

Suggested equivalent online courses:

Further Suggestions:

B.A./B.Sc. III (SEMESTER-V) PAPER-II (i) Number Theory & Game Theory

	Amme: Degree B.A./B.Sc. Semester: Sixth			
			Subject: Mathematics	
Course C	ode: B030502T		Course Title: Number Theory & Game Theory	
Course ou	utcomes:			
CO1: Upo	on successful cor	mpletion, students will	have the knowledge and skills to solve problems in elementary number theory and also apply	elementar
number th	eory to cryptogra	phy.		
mak ther	king process of in refore help impro	terdependent subjects. ve decision making.	ame Theory. Game Theory is a mathematical framework which makes possible the analysis of a lit is aimed at explaining and predicting how individuals behave in a specific strategic sit	tuation, and
	ituation is strateg tegic.	gic if the outcome of a	decision problem depends on the choices of more than one person. Most decision problems in	real life ar
	U	cepts, real-world examp	ples, case studies, and classroom experiments might be used.	
	Credits: 5		Core Compulsory / Elective	
	Max. Marks: 25	5+75	Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
			Part- A	
			Number Theory	
				No. of
Unit		Topics		
	Theory of Nun	nbers		Lectures
I	Divisibility; Eu	clidean algorithm; prir	mes; congruences; Fermat's theorem, Euler's theorem and Wilson's theorem; Fermat's quotients olutions of congruences; Chinese remainder theorem; Euler's phi-function.	10
II			; primitive roots and their existence; quadratic residues; Legendre symbol, Gauss' lemma about by law; proofs of various formulations; Jacobi symbol.	9
III	Diophantine E Solutions of ax diophantine equ	$x + by = c, x^n + y^n =$	z^n ; properties of Pythagorean triples; sums of two, four and five squares; assorted examples of	9
		nctions and Recurren	nce Relations lating coefficient of generating functions, Partitions, Exponential Generating Functions, A	

UG MATHEMATICS 22

Recurrence Relations, Solution of Inhomogeneous Recurrence Relations, Solutions with Generating Functions.

Summation Method. Recurrence Relations: Recurrence Relation Models, Divide and conquer Relations, Solution of Linear,

9

IV

	Part- B	
	Game Theory	
Unit	Topics	No. of Lectures
V	Introduction, overview, uses of game theory, some applications and examples, and formal definitions of: the normal form, payoffs, strategies, pure strategy Nash equilibrium.	10
VI	Introduction, characteristic of game theory, Two- person zero-sum game, Pure and Mixed strategies, Saddle point and its existence.	10
VII	Fundamental Theorem of Rectangular games, Concept of Dominance, Dominance and Graphical method of solving Rectangular games.	9
VIII	Relationship between rectangular game and Linear Programming Problem, Solving rectangular game by Simplex method, reduction of m x n game and solution of 2x2, 2 x s, and r x 2 cases by graphical method, algebraic and linear programming solution of m x n games.	

Suggested Readings (Part-A Number Theory):

- 1. Niven, I., Zuckerman, H. S. and Montegomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York.
- 2. Burton, D. M. (2002) Elementary Number Theory (4th edition) Universal Book Stall, New Delhi.
- 3. Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatorics Including Concepts of Graph Theory, Schaum's Outline.
- 4. Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications.
- 5. Suggested digital plateform: NPTEL/SWAYAM/MOOCs
- **6.** Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Game Theory):

- 1. Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003
- 2. Vijay Krishna, Game Theory, Academic Press.
- 3. Prajit Dutta, Strategies and Games, MIT Press, (Website 1) http://www.ece.stevens-tech.edu/~ccomanic/ee800c.html
- 5. Allan MacKenzie, Game Theory for Wireless Engineers, Synthesis lectures on Communications, 2006
- 6. Suggested digital plateform: NPTEL/SWAYAM/MOOCS
- 7. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25 SN Assessment Type Max. Marks 1 Class Tests 10 2 Online Quizzes/ Objective Tests 5 Fresentation 5 Assignment 5

Course prerequisites: To study this course, a student must have Diploma in Mathematics

Suggested equivalent online courses:

Further Suggestions:

B.A./B.Sc. III (SEMESTER-V) PAPER-II (ii) Graph Theory & Discrete Mathematics

Programme: Degree	Year: Third	Semester: Sixth
Class: B.A./B.Sc.		
Subject: Mathematics		
Course Code: B030502T Course Title: Graph Theory & Discrete Mathematics		Course Title: Graph Theory & Discrete Mathematics
Course outcomes:		

CO1: Upon successful completion, students will have the knowledge of various types of graphs, their terminology and applications.

CO2: After Successful completion of this course students will be able to understand the isomorphism and homomorphism of graphs. This course covers the basic concepts of graphs used in computer science and other disciplines. The topics include path, circuits, adjacency matrix, tree, coloring. After successful completion of this course the student will have the knowledge graph coloring, color problem, vertex coloring.

CO3: After successful completion, students will have the knowledge of Logic gates, Karnaugh maps and skills to proof by using truth tables. After Successful completion of this course students will be able to apply the basics of the automation theory, transition function and table.

CO4: This course covers the basic concepts of discrete mathematics used in computer science and other disciplines that involve formal reasoning. The topics include logic, counting, relations, hasse diagram and Boolean algebra. After successful completion of this course the student will have the knowledge in Mathematical reasoning, combinatorial analysis, discrete structures and Applications.

Credits: 5	Core Compulsory / Elective Min. Passing Marks:	
Max. Marks: 25+75		
Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0		

Part- A

Graph Theory

Unit	Topics	No. of
	Topics	
I	Introduction to graphs, basic properties of graphs, Simple graph, multi graph, graph terminology, representation of graphs, Bipartite, regular, planar and connected graphs, connected components in a graph, Euler graphs, Directed, Undirected, multi-graph, mixed graph.	10
II	Walk and unilateral components, unicursal graph, Hamiltonian path and circuits, Graph colouring, chromatics number, isomorphism and homomorphism of graphs, Incidence relation and degree of the graph.	9
III	Operation of graph circuit, Path and circuits, Eulerian circuits, Hamiltonian path and cycles, Adjacency matrix, Weighted graph, Travelling salesman problem, Shortest path, Dijkstra's algorithm.	9
IV	Tree, Binary and Spanning trees, Coloring, Color problems, Vertex coloring and important properties.	9

	Part- B	
	Discrete Mathematics	
Unit	Topics	No. of Lectures
V	Propositional Logic- Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truth table. Relation- Definition, types of relation, domain and range of a relation, pictorial representation of relation, properties of relation, partial ordering relation.	10
VI	Boolean Algebra- Basic definitions, Sum of products and products of sums, Logic gates and Karnaugh maps. Graphs- Simple graph, multi graph, graph terminology, representation of graphs, Bipartite, regular, planar and connected graphs, connected components in a graph, Euler graphs, Hamiltonian path and circuits, Graph colouring, chromatics number, isomorphism and homomorphism of graphs.	10
VII	Combinatories- Inclusion- exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations, Inhomogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F. solution of combinatorial problem using G.F.)	9
VIII	Finite Automata- Basic concepts of automation theory, Deterministic Finite Automation (DFA), transition function, transition table, Non Deterministic Finite Automata (NDFA), Mealy and Moore machine, Minimization of finite automation.	9

Suggested Readings (Part-A Graph Theory):

- 1. "Graph Theory with Applications to Engineering and Computer Science" by Narsingh Deo
- 2. "Introduction to Graph Theory" by Douglas B West
- 3. "Graph Theory with Algorithms and Its Applications: In Applied Science and Technology" by Santanu Saha Ray
- 4. Suggested digital plateform: NPTEL/SWAYAM/MOOCs
- **5.** Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Discrete Mathematics):

- 1. Discrete Mathematics by C. L.Liu.
- 2. Discrete Mathematics with computer application by Trembley and Manohar.
- 3. Discrete Mathematics and Its Applications by Kenneth H. Rosen
- 4. Suggested digital plateform: NPTEL/SWAYAM/MOOCS
- 5. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)

	Suggested Continuous Evaluation Methods: Max. Marks: 25			
SN	Assessment Type	Max. Marks		
1	Class Tests	10		
2	Online Quizzes/ Objective Tests	5		
3	Presentation	5		
4	Assignment	5		

Course prerequisites: To study this course, a student must have Diploma in Mathematics

Suggested equivalent online courses:

Further Suggestions:

B.A./B.Sc. III (SEMESTER-V) PAPER-II (iii) Differential Geometry & Tensor Analysis

Programm Class: B.A	nme: Degree Year: Third Year: Third			
Class. D.F	1./ D .OC.		Subject: Mathematics	
Course Co	ode: B030502T		Course Title: Differential Geometry & Tensor Analysis	
Course ou				
CO1: Afte	er Successful cor	mpletion of this course,	students should be able to determine and calculate curvature of curves in different coordinate syst	tems.
CO2: Thi	s course covers	the Local theory of Co	urves, Local theory of surfaces, Geodesics, Geodesics curvature, Geodesic polars, Curvature o	of curves on
surfaces, C	Gaussian curvatu	re, Normal curvature et	tc.	
		pletion of this course, s Einstein tensor etc.	students should have the knowledge of tensor algebra, different types of tensors, Riemannian	space, Ricc
	Credits: 5		Core Compulsory / Elective	
	Max. Marks: 2	5+75	Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
			Part- A	
			Differential Geometry	
				No. of
Unit		Topics		
I	Local theory of curves-Space curves, Examples, Plane Curves, tangent and normal and binormal, Osculating Plane, normal plane and rectifying plane, Osculating circle, osculating sphere Helices, Serret-Frenet apparatus, contact between curve and surfaces, tangent surfaces, involutes and evolutes of curves, Bertrand curves, Intrinsic equations, fundamental existence theorem for space curves.			10
II	<u> </u>		c patches on surface curve of a surface, family of surfaces (one parameter), edge of regression, developable surfaces, surfaces of revolution, Helicoids.	9
III	Metric-first fundamental form and arc length, Direction coefficients, families of curves, intrinsic properties, geodesics, canonic geodesic equations, normal properties of geodesics, geodesics curvature, Geodesic polars.		9	
IV	Gauss-Bonnet theorem, curvature of curves on surfaces, Gaussian curvature, normal curvature, Meusneir's theorem, mean curvature, Gaussian curvature, umbilic points, lines of curvature, Rodrigue's formula, Euler's theorem.		9	

	Tensor Analysis	
Unit	Topics	No. of Lectures
V	Tensor algebra: Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensors-symmetric tensor, inner product, associated tensor with examples.	10
VI	Tensor Analysis: Contravariant and covariant vectors and tensors, Mixed tensors, Symmetric and skew-symmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Law of transformation of Christoffel's symbols, Covariant differentiation, non-commutativity of Covariant derivative.	4.0
VII	Gradient of scalars, Divergence of a contravariant vector, covariant vector and conservative vectors, Laplacian of an invariant, curl of a covariant vector, irrotational vector, with examples.	9
VIII	Riemannian space, Riemannian curvatures and their properties, geodesics, geodesic curvature, geometrical interpretation of curvature tensor, Ricci tensor, scalar curvature, Einstein space and Einstein tensor.	9

Part-B

Suggested Readings (Part-A Differential Geometry):

- 1. T.J. Willmore, An Introduction to Differential Geometry, Dover Publications, 2012.
- 2. B. O'Neill, Elementary Differential Geometry, 2nd Ed., Academic Press, 2006.
- 3. C.E. Weatherburn, Differential Geometry of Three Dimensions, Cambridge University Press 2003.
- 4. D.J. Struik, Lectures on Classical Differential Geometry, Dover Publications, 1988.
- 5. S. Lang, Fundamentals of Differential Geometry, Springer, 1999.
- 6. B. Spain, Tensor Calculus: A Concise Course, Dover Publications, 2003.
- 7. An Introduction to Differential Geometry (with the use of tensor Calculus), L. P. Eisenhart, Princeton University Press, 1940.
- 8. Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd Edition, I. S. Sokolnikoff, John Wiley and Sons., 1964.
- 9. Suggested digital plateform: NPTEL/SWAYAM/MOOCs
- 10. Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Tensor Analysis):

- 1. Tensors- Mathematics of Differential Geometry by Z. Ahsan, PHI,2015
- 2. David C. Kay, Tensor Analysis, Schaum's Outline Series, McGraw Hill 1988.
- 3. R. S, Mishra, A Course in Tensors with Applications to Reimannian Geometry, Pothishala Pvt. Ltd, Allahabad.
- 4. Suggested digital plateform: NPTEL/SWAYAM/MOOCS
- 5. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25 SN Assessment Type Max. Marks 1 Class Tests 10 2 Online Quizzes/ Objective Tests 5 3 Presentation 5 4 Assignment 5

Course prerequisites: To study this course, a student must have Diploma in Mathematics

Suggested equivalent online courses:

Further Suggestions:

B.A./B.Sc. III (SEMESTER-VI) PAPER-I METRIC SPACES & COMPLEX ANALYSIS

Programme: Degree Year: Third Class: B.A./B.Sc.		Year: Third	Semester: Sixth			
Class. D .71	I./ D .() C.		Subject: Mathematics			
Course Co	ode: B030601T		Course Title: METRIC SPACES & COMPLEX ANALYSIS			
Course ou	tcomes:					
CO1: The	course is aimed	at exposing the studen	ts to foundations of analysis which will be useful in understanding various physical phenomena a	nd gives th		
student the	foundation in m	athematics.				
CO2: Afte	er completion of	this course the student	will have rigorous and deeper understanding of fundamental concepts in Mathematics. This will be	e helpful to		
the student	in understanding	g pure mathematics and	d in research.			
CO3: Stu	idents will be abl	e to know the concepts	s of metric space, basic concepts and developments of complex analysis which will prepare the st	udents to		
take up fur	ther applications	in the relevant fields.				
	Credits: 4		Core Compulsory / Elective			
	Max. Marks: 25	5+75	Min. Passing Marks:			
		Total No. of I	Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part- A			
			Metric Spaces			
Unit			Topics	No. of Lectures		
	Basic Concepts	S				
I	Metric spaces:	Definition and example	es, Sequences in metric spaces, Cauchy sequences, Complete metric space.	8		
	Topology of M	etric Spaces				
II		and closed ball, Neighborhood, Open set, Interior of a set, limit point of a set, derived set, closed set, closure of a set, diameter of				
	·	heorem, Subspaces, D				
	Continuity & Uniform Continuity in Metric Spaces					
III		us mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphism,				
		pping, Banach fixed po	oint theorem.			
		s and Compactness				
IV	Connectedness,	Connected subsets of	, Connectedness and continuous mappings, Compactness, Compactness and boundedness,	7		

UG MATHEMATICS 28

Continuous functions on compact spaces.

	Part- B	
	Complex Analysis	
Unit	Topics	No. of Lectures
V	Analytic Functions and Cauchy-Riemann Equations Functions of complex variable, Mappings; Mappings by the exponential function, Limits, Theorems on limits, Limits involving the point at infinity, Continuity, Derivatives, Differentiation formulae, Cauchy-Riemann equations, Sufficient conditions for differentiability; Analytic functions and their examples.	O
VI	Elementary Functions and Integrals Exponential function, Logarithmic function, Branches and derivatives of logarithms, Trigonometric function, Derivatives of functions, Definite integrals of functions, Contours, Contour integrals and its examples, Upper bounds for moduli of contour integrals.	. 8
VII	Cauchy's Theorems and Fundamental Theorem of Algebra Antiderivatives, Proof of antiderivative theorem, Cauchy-Goursat theorem, Cauchy integral formula; An extension of Cauchy integral formula, Consequences of Cauchy integral formula, Liouville's theorem and the fundamental theorem of algebra.	7
VIII	Series and Residues Convergence of sequences and series, Taylor series and its examples; Laurent series and its examples, Absolute and uniform convergence of power series, Uniqueness of series representations of power series, Isolated singular points, Residues, Cauchy's residue theorem, residue at infinity; Types of isolated singular points, Residues at poles and its examples.	7

Suggested Readings (Part-A Metric Space):

- 1. Mathematical Analysis by Shanti Narain.
- 2. Shirali, Satish & Vasudeva, H. L. (2009). Metric Spaces, Springer, First Indian Print.
- 3. Kumaresan, S. (2014). Topology of Metric Spaces (2nd ed.). Narosa Publishing House. New Delhi.
- 4. Simmons, G. F. (2004). Introduction to Topology and Modern Analysis. Tata McGraw Hill. New Delhi.
- 5. Suggested digital plateform: NPTEL/SWAYAM/MOOCS.
- 6. Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Complex Analysis):

- 1. Function of Complex Variable by Shanti Narain.
- 2. Complex variable and applications by Brown & Churchill.
- 3. Suggested digital plateform: NPTEL/SWAYAM/MOOCS.
- 4. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)

	Suggested Continuous Evaluation Methods: Max. Marks: 25	
SN	Assessment Type	Max. Marks
1 Class Tests		10
2 Online Quizzes/ Objective	Tests	5
3 Presentation		5
4 Assignment		5
Course propagaigites. To study	this source a student must have Diplome in Methametics	

Course prerequisites: To study this course, a student must have Diploma in Mathematics

Suggested equivalent online courses:

Further Suggestions:

B.A./B.Sc. III (SEMESTER-VI) PAPER-II Numerical Analysis & Operation Research

Programme: Degree Class: B.A./B.Sc.	Year: Third	Semester: Sixth
		Subject: Mathematics
Course Code: B030602T		Course Title: Numerical Analysis & Operations Research
Course Code: B030602T		Course Title: Numerical Analysis & Operations Research

Course outcomes:

CO1: The aim of this course is to teach the student the application of various numerical technique for variety of problems occurring in daily life. At the end of the course the student will be able to understand the basic concept of Numerical Analysis and to solve algebraic and differential equation.

CO2: The main outcome will be that students will be able to handle problems and finding approximated solution. Later he can opt for advance course in Numerical Analysis in higher Mathematics.

CO3: The student will be able to solve various problems based on convex sets and linear programming. After successful completion of this paper will enable the students to apply the basic concepts of transportation problems and its related problems to apply in further concepts and application of operations research.

Credits: 4	Core Compulsory / Elective
Max. Marks: 25+75	Min. Passing Marks:

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

PART-A

Numerical Analysis

Unit	Topics	No. of Lectures
I	Solution of equations: bisection, Secant, Regular Falsi, Newton Raphson's method, Newton's method for multiple roots, Interpolation, Lagrange and Hermite interpolation, Difference schemes, Divided differences, Interpolation formula using differences.	8
II	Numerical differentiation, Numerical Quadrature: Newton Cotes Formulas, Gaussian Quadrature Formulas, System of Linear equations: Direct method for solving systems of linear equations (Gauss elimination, LU Decomposition, Cholesky Decomposition), Iterative methods (Jacobi, Gauss Seidel, Relaxation methods). The Algebraic Eigen value problem: Jacobi's method, Givens method, Power method.	8
III	Numerical solution of Ordinary differential equations: Euler method, single step methods, Runge-Kutta method, Multi-step methods: Milne-Simpson method, Types of approximation: Last Square polynomial approximation, Uniform approximation, Chebyshev polynomial approximation.	7
IV	Difference Equations and their solutions, Shooting method and Difference equation method for solving Linear second order differential equation with boundary conditions of first, second and third type.	7

PART-B

Operations Research

Unit	Topics	No. of Lectures
V	Introduction, Linear programming problems, statement and formation of general linear programming problems, graphical method, slack and surplus variables, standard and matrix forms of linear programming problem, basic feasible solution.	8
VI	Convex sets, fundamental theorem of linear programming, basic solution, Simplex method, introduction to artificial variables, two phase method Big-M method and their comparison.	8
VII	Resolution of degeneracy, duality in linear programming problems, primal dual relationships, revised simplex method, sensitivity analysis.	7
VIII	Transportation problems, assignment problems.	7

Suggested Readings(Part-A Numerical Analysis):

- 1. Numerical Methods for Engineering and scientific computation by M. K. Jain, S.R.K. Iyengar & R.K. Jain.
- 2. Introductory methods of Numerical Analysis by S. S. Sastry
- 3. Suggested digital plateform: NPTEL/SWAYAM/MOOCs
- 4. Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings(Part-B Operation Research):

- 1. Taha, Hamdy H, "Opearations Research- An Introduction", Pearson Education.
- 2. Kanti Swarup, P. K. Gupta, Man Mohan Operations research, Sultan Chand & Sons
- **3.**Hillier Frederick S and Lieberman Gerald J., "Operations Research", McGraw Hill Publication.
- **4.**Winston Wayne L., "Operations Research: Applications and Algorithms", Cengage Learning, 4th Edition.
- 5. Hira D.S. and Gupta Prem Kumar, "Problems in Operations Research: Principles and Solutions", S Chand & Co Ltd.
- **6.** Kalavathy S., "Operations Research", S Chand.
- 7. Suggested digital plateform: NPTEL/SWAYAM/MOOCs.
- 8. Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25

SN	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation	5
4	Assignment	5

Course prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics

Suggested equivalent online courses:

Further Suggestions:

B.A./B.Sc. III (SEMESTER-VI) PAPER-III Practical

Programme Class: B.	me: Degree A./B.Sc.	Year: Third	Semester: Sixth	
			Subject: Mathematics	
Course C	Code: B030603P		Course Title: Practical	
Course o	outcomes:			
The main	objective of the	course is to equip the	student to solve the transcendental and algebraic equations, system of linear equations, ordinary	y differentia
equations.	, Interpolation, N	umerical Integration, N	Method of finding Eigenvalue by Power method (up to 4×4), Fitting a Polynomial Function	(up to thire
degree).				
	Credits: 2		Core Compulsory / Elective	
	Max. Marks: 25	5+75	Min. Passing Marks:	
		Total No. (of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4	
				No. of
Unit			Topics	Lectures
	List of the pracetc	work to be performe ticals to be done using ranscendental and algel	computer algebra software (CAS), for example Mathematica/MATLAB/Maple/ Maxima/Scilab	
	i) Bisection me	C		
			oot, multiple roots, complex roots).	
	iii) Secant meth	` -		
	iv) Regula Fals	i method.		
		ystem of linear equatio	ns	
	i) LU decompo	sition method		
	ii) Gaussian eli	mination method		
	iii) Gauss-Jacol	bi method		
	iv) Gauss-Seide	el method		
	3. Interpolation	l		
	i) Lagrange Inte	erpolation		
	ii) Newton's fo	rward, backward and d	ivided difference interpolations	
	4. Numerical Ir	ntegration		
	i) Trapezoidal l	Rule		
	ii) Simpson's o	ne third rule		
	iii) Weddle's R	ule		
	iv) Gauss Quad	Irature		
	5. Method of fi	nding Eigenvalue by Po	ower method (up to 4×4)	
	6. Fitting a Poly	ynomial Function (up to	o third degree)	

	7. Solution of ordinary differential equations	
	i) Euler method	
	ii) Modified Euler method	
	iii) Runge Kutta method (order 4)	
	(iv) The method of successive approximations (Picard)	
Su	iggested Readings:	
Thi	s course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.)	
	Suggested Continuous Evaluation Methods: Max. Marks: 25	
SN	Assessment Type	Max. Marks
SN 1	Assessment Type Class Tests	Max. Marks
SN 1 2	, , , , , , , , , , , , , , , , , , ,	
1	Class Tests	10
1 2	Class Tests Online Quizzes/ Objective Tests	10 5

Suggested equivalent online courses:

Further Suggestions: